
Fakultät für

Ingenieurwissenschaften

und Informatik

Institut für Organisation und

Management von Informations-

systemen

3: Parallelization

Jonas Otto

Matrikelnummer: 982249

ENGG 72323 - Heterogeneous and Parallel Computing Infrastructures

Wordcount: 2.000-3.000

1 INTRODUCTION 1

1 Introduction

In recent history, processor performance indicators such as frequency seem to

have stagnated. At the same time however, the number of processing cores in a

single system has steadily increased (fig. 1). This prompts software developers to

adopt a mindset of thinking about parallelization while shaping today’s software

landscape, to keep up with advances in processor and computer design.

Not all applications are suited to all forms of parallelism, and the scalability and

expected performance gain is finite. In this essay, the different ways in which

an application can be parallelized, and the factors determining scalability, will

be presented and discussed.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1970 1980 1990 2000 2010 2020

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 10

3
)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data

Figure 1: “48 Years of Microprocessor Trend Data” by Karl Rupp, licensed

under CC BY 4.0

2 Analysis

2.1 Parallel Computing

A classification of the many parallel computing architectures has been suggested

by Flynn. Flynn distinguishes computer architectures by the number of instruc-

tion streams (Singe Instruction SI or Multiple Instruction MI) and number of

https://github.com/karlrupp/microprocessor-trend-data
https://creativecommons.org/licenses/by/4.0/

2 ANALYSIS 2

data streams (Single Data SD or Multiple Data MD). Of the four resulting

classifications, all but the MISD variant are commonly found, and of those the

Single Instruction Multiple Data SIMD and Multiple Instruction Multiple Data

MIMD variants are of interest to us here. Most commonly available proces-

sors for general purpose computing follow a combination of those approaches:

Multicore processors that allow simultaneous execution of multiple programs on

separate data (MIMD classification) are commonplace. Additionally, the indi-

vidual processing cores often offer vector extensions, which as a form of SIMD

computing offer fast mathematical operations on multiple values (vectors) at

once.

Distributed systems such as entire HPC clusters may also be classified as MIMD

computing architectures.

It is apparent that MIMD architectures in particular are a very far ranging clas-

sification, and lend themselves to more granular categorizing. A useful distinc-

tion is between shared-memory and non-shared-memory systems. The defining

characteristic of a non-shared-memory system is the need for a dedicated com-

munication channel between multiple processing units. On a shared-memory

system, this communication can happen implicitly through memory regions ac-

cessible to multiple processing units.

On the largest scale, such non-shared-memory, MIMD systems such as high per-

formance clusters perform parallel computation by providing a large number of

nodes, that each run independently. A fast interconnect between the individual

nodes is usually present, but has to be used explicitly (using libraries such as

MPI for example).

Single processing nodes (or individual computers, for that matter) are them-

selves MIMD systems, but this time usually of the shared-memory variant. All

processors share common RAM, and the operating system provides means of

running parallel computation: Processes usually receive their own protected

memory segment for safety and security purposes, but multiple threads inside

one process can access the same memory without any operating system interven-

tion. The operating system provides scheduling for processes and threads (and

has no need to differentiate between a process and thread during scheduling),

which allows many programs and programs with more threads than processors

to run concurrently. The operating system periodically interrupts execution and

selects a different, waiting, thread for execution. Those context switches can

yield a substantial performance deficit when many threads are used, and the

ratio between program execution time and time spent switching threads is bad.

2 ANALYSIS 3

Camera Bayer to grayscale Detect lane

Bayer to RGB Detect signs Tracking Planning

Visualization Odometry

Figure 2: Data flow graph of a fictional task-parallel autonomous-driving appli-

cation

2.2 Task Parallelism

To benefit from the multiple ways of parallel computing described in section 2.1,

an application has to be analyzed in which ways it can be parallelized, and how it

scales with an increasing degree of parallelization, and with increasing problem

size.

In order to explore and model the ways in which an application can be paral-

lelized, two models are usually considered: Task- and data parallelism.

In this first part, the concept of task parallelism is explored. If an application

consists of multiple individual tasks, those can be performed according to its

dependencies. Figure 2 illustrates this in terms of a data flow graph: In this

example of an autonomous driving application, the individual tasks all require

some input data, which is provided by another task. The tracking algorithm for

example needs information about both the lane and traffic signs in front of the

vehicle. It is however apparent that the tasks of creating a grayscale image and

then detecting the lane and the task of creating the RGB image and detecting

traffic signs can be executed in parallel. They both depend on the camera image,

but execute independently. The serial part of the application continues with the

tracking step, which depends on the results of all the previous detection steps.

Planning can only be performed after the tracking step.

The critical path is the path of execution that determines the execution time of

the entire application. In fig. 2, the critical path is marked in red. No matter

to which degree the application is parallelized, the total execution time will

never be less than the execution time of the critical path, since it’s inherently

serial. In section 2.4, this will be be called the serial part of the application.

Another bottleneck arises from the available resources: If, for example, the

lane-detection and visualization tasks both require exclusive access to the GPU,

2 ANALYSIS 4

those tasks can not be executed in parallel, even though the data dependencies

would allow it, but sequentially or in a switching manner (depending on the

scheduling used). There exist frameworks such as “SMP Superscalar” from the

Barcelona Supercomputing Center [1] and the OpenCV Graph API that allow

the programmer to directly specify the different tasks and dependencies between

them. The framework can then execute tasks in parallel and start dependent

tasks once their input is ready.

2.3 Data Parallelism

In data-parallel applications, only one single type of task is considered. This

task is however applied to a large amount of data, which can be split up to

parallelize the application. Common examples of data-parallel algorithms are

found in the field of image processing. When applying a filter in the form

of convolution with a filter kernel, each pixel in the resulting image could be

calculated simultaneously. It only depends on a part of the input image, and

the same operation is applied for each pixel.

It has to be ensured that no data dependencies exist between the individual

instances of the task, since tasks would have to wait for completion of the

previous one otherwise (see section 2.2).

One of the main difficulties in parallelizing a data-parallel application is the

segmentation of the data. A segmentation into the smallest possible parts, such

as individual pixels of an image, is usually far from optimal. Launching a thread

or process always incurs some fixed overhead, and running more threads than

processors available increases the overhead of context switching. Other aspects

of segmentation have to be kept in mind: Preserving data locality is important

to benefit from processor caches, and the particular form of segmentation might

help reduce communication, such as by only exchanging data at the border of

the segment between iterations. The optimal degree of parallelization can often

only be determined empirically.

2.4 Scalability: Amdahl’s Law

Not every part of an application can be parallelized. In section 2.2, it became

apparent that tasks often depend on the result of other tasks, which forces them

to execute sequentially. In data parallel applications, segmenting the dataset

must be done before parallel execution begins.

2 ANALYSIS 5

1 2 4 8 16 32 64 128 256 512 1024 2048

20

40

Number of cores

S
p

ee
d

u
p

s = 0%

s = 2%

s = 4%

s = 6%

s = 8%

s = 10%

Figure 3: Maximum application with increasing degree of parallelism, according

to Amdahl’s Law, for varying parts of non-parallelizable code

Named after the computer scientist Gene Amdahl, the maximum possible speedup

of an application that consists of a sequential part s and a parallelizable part

p = 1 − s can be determined using Amdahl’s Law [2]: Given n cores or pro-

cessors, an application which runs in time t before parallelization will have an

execution time of

tparallel = s · t +
(1 − s) · t

n
(1)

or slower.

Relating the original and parallelized execution time yields the total speedup S:

S =
t

tparallel
=

n

n · s + (1 − s)
(2)

This provides us with a theoretical upper bound for the speedup we can expect

when parallelizing an application.

Graphing this relationship of speedup by number of cores, for varying amounts

of serial part s, results in fig. 3. It is apparent that even for applications that

are largely parallelizable, the benefit of adding additional processing units di-

minishes quickly. Figure 4 shows this relationship for fixed n, and it is apparent

that significant performance gains require a sufficiently large parallelizable part.

3 DISCUSSION 6

76% 78% 80% 82% 84% 86% 88% 90% 92% 94% 96% 98% 100%

0

20

40

60

Parallel part

S
p

ee
d

u
p

n = 64
n = 32
n = 16
n = 4
n = 1

Figure 4: Amdahl’s law graphed for fixed number of processing units n

2.5 Limitations of Amdahl’s Law

Amdahl’s law provides an upper bound, but not one that a programmer can

reasonably expect to immediately reach. Even with trivially parallel problems,

the overhead induced by parallelizing is never zero. Communication, organi-

zation and management of parallel execution threads takes time, and increases

with the number of threads. We expect to reach a point where the communica-

tion overhead dominates the execution time compared to the actual application

task. The speedup decreases, and may even become negative, meaning the extra

overhead makes the parallel application run slower than the fully serial one. In

section 2.1, it was already mentioned that an operating system, which inter-

rupts the running thread to run more threads than available processors, can be

devastating to performance. While the impact of the operating system will not

be discussed in detail here, this is important to consider when designing parallel

programs.

3 Discussion

In the following, the parallelization of applications shall be considered from an

implementation standpoint. How do the specific ways in which an application

exploits parallel computation differ? How does that impact the software design

and architecture? And in which layers of abstraction can the parallelization be

hidden?

3 DISCUSSION 7

3.1 Parallelism at application level

Direct, explicit parallelization of an application might be the most straightfor-

ward way of running the program on a parallel architecture. This does however

mean that several challenges have to be addressed: Threads or processes have

to be started, the problem has to be partitioned, work has to be distributed.

Communication has to be established manually, and synchronization between

threads is necessary.

On this level, operating-system functions such as POSIX pthreads are used for

creating and managing threads. Synchronization primitives such as semaphores

or language specific implementations like the C++ std::mutex are used to

manage access to shared resources. Communication between threads can be

performed implicitly, by writing results into a shared memory segment or by

returning results directly.

A popular pattern for parallel applications is the fork-and-join pattern: The

program repeatedly forks, spawning multiple threads that each work on a por-

tion of the current task, and then joins those threads, waiting for each to finish

execution and thus providing a point of synchronization.

The master-worker pattern describes a situation in which the work is continu-

ously packaged into tasks, which the master then submits for completion by a

worker. Both of these popular design patterns can be combined, for example

by submitting tasks to an existing thread pool instead of actually forking the

process or creating new threads, in order to avoid some of the overhead induced

by thread-creation.

An application programmer is however not required to use pthreads and friends

manually. Libraries such as Intel TBB and compiler extensions like OpenACC

[3] and OpenMP [4] exist and provide developers with facilities like thread pools.

OpenMP even offers automatic parallelization of for loops for example, which

implicitly divides the loop into tasks submitted to the internal thread pool,

and takes care of joining threads and collecting results such that the program

continues as if execution was sequential.

3.2 Parallelism below the application level

In the interest of hiding implementation details from high-level programs, par-

allelism can be hidden from the application programmer: If a software library

offers a sufficiently high level of abstraction, it can perform internal operations

3 DISCUSSION 8

in parallel while maintaining a serial programming model to the developer. One

example is the popular image processing library OpenCV: OpenCV hides com-

plex algorithms behind a relatively simple interface. Many of those algorithms in

the field of image processing lend themselves nicely to a data-parallel approach

and benefit greatly from parallelization. Therefore, OpenCV maintains a thread

pool to execute those operations, and even contains GPU implementations using

OpenCL and CUDA for some algorithms.

A similar approach is even taken by ubiquitous libraries such as the C++

Standard Template Library (STL): Since 2017, many of the functions in the

<algorithm> library take an additional execution policy argument that allows

the programmer to specify that the algorithm shall be parallelized, vectorized,

both, or neither. The concrete implementation varies by library vendor, but an

internally maintained thread pool is used at least by GCC‘s libstdc++ (using

Intel TBB internally [5]).

3.3 Parallelism above the application level

A different approach to parallelizing application code which is not written in an

inherently parallel way is to exploit the fact that the application may already

be divided into more or less independent modules, which can be executed in

parallel. This is often the case, when the application code is embedded into

some kind of framework. The Robot Operating System ROS for example is

a framework popular for application in the fields of robotics and automation.

A core concept of this framework is the notion of a node, which is a program

that receives and publishes data via publish/subscribe channels and performs

a specific task (such as receiving sensor data or controlling actuators). Those

nodes can be started in individual processes (or threads), since they only rely

on the publish/subscribe communication channels for synchronization.

While this can lead to an immediate performance increase compared to serial

execution, this does not provide scalability with more processors. The upper

bound of performance increase is reached as soon as every node has enough

processing resource to not have to share them with another node (disregarding

the potential of each single node to benefit from multiple processors).

A similar effect can be achieved using MPI, which also provides an inter-process

communication channel and starts multiple processes, although in this case the

individual processes usually perform the same task on a smaller subset of data,

which enables greater scalability with the number of processes. This could be

4 CONCLUSION 9

considered an example for data parallelism, while the ROS example is closer to

task parallelism.

4 Conclusion

Parallel processing architectures enable great advances in computational per-

formance despite stagnating clock speeds. To benefit from this development,

application programmers have to be aware of how execution time scales with an

ever increasing degree of parallelism, how to exploit the different ways a com-

puter architecture realizes parallel execution, and where the pitfalls lie when

programming a parallel system.

Amdahl’s law illustrates how the effect of additional processing elements dimin-

ishes the higher the inherently serial share of an application is. It determines

where the theoretical limits are in terms of expected speedup for a given appli-

cation with a varying degree of parallelism.

Task- and Data-Parallelism are two models that can be used to describe the

parallel nature of a problem, and help to transform that problem into a parallel

application. Finally, multiple approaches for specific implementations have been

discussed, from the viewpoint of a layered application utilizing frameworks and

libraries. There is no best way to parallelize any application, and no one recipe

for reaching the theoretical peak performance. But if the developer is conscious

about the inherently serial part of the application, and the implications thereof,

tools, libraries and frameworks exist to take advantage of parallel computing

architectures at any point in the development process.

REFERENCES 10

References

[1] L. Schubert, “Heterogeneous and Parallel Computing Infrastructures,” Uni-

versity of Ulm, 2020.

[2] G. M. Amdahl, “Validity of the single processor approach to achieving

large scale computing capabilities,” in Proceedings of the April 18-20,

1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring). New

York, NY, USA: Association for Computing Machinery, 1967, p. 483–485.

[Online]. Available: https://doi.org/10.1145/1465482.1465560

[3] OpenACC-Standard.org, “The OpenACC application programming inter-

face,” 2020. [Online]. Available: https://www.openacc.org/specification

[4] OpenMP Architecture Review Board, “OpenMP application program

interface version 3.0,” 2020. [Online]. Available: https://www.openmp.org/

spec-html/5.1/openmp.html

[5] The Free Software Foundation and contributors, “The GNU C++ Library

Manual,” 2020. [Online]. Available: https://gcc.gnu.org/onlinedocs/

libstdc++/manual/index.html

https://doi.org/10.1145/1465482.1465560
https://www.openacc.org/specification
https://www.openmp.org/spec-html/5.1/openmp.html
https://www.openmp.org/spec-html/5.1/openmp.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html

REFERENCES 11

Declaration of Originality

I confirm that this assignment is my own work and that I have not sought or

used inadmissible help of third parties to produce this work and that I have

clearly referenced all sources used in the work. I have fully referenced and used

inverted commas for all text directly or indirectly quoted from a source.

This work has not yet been submitted to another examination institution –

neither in Germany nor outside Germany – neither in the same nor in a similar

way and has not yet been published.

Ulm, on the .

Jonas Otto

	Introduction
	Analysis
	Parallel Computing
	Task Parallelism
	Data Parallelism
	Scalability: Amdahl's Law
	Limitations of Amdahl's Law

	Discussion
	Parallelism at application level
	Parallelism below the application level
	Parallelism above the application level

	Conclusion

