
Lecture Notes: Security of IT-Systems

Jonas Otto

February 25, 2021

Todo list

Linux access control, ACLs . 21
multi category security . 23
AppArmor: describe example from video 6b 28
iOS Security . 28
privacy motivation . 47

1

Contents

1 Fundamentals 5
1.1 Motivation and Introduction . 5
1.2 Terminology . 5
1.3 Attacks and Defenses . 6

1.3.1 Attacks . 6
1.3.2 Security Mechanisms and Policies 7

2 Cryptography 9
2.1 Cryptographic Hash Functions and Random Numbers 9

2.1.1 Hash Functions . 9
2.1.2 Random Number Generators 10

2.2 Encryption . 10
2.2.1 Symmetric Encryption . 10
2.2.2 Asymmetric Encryption 11
2.2.3 Diffie-Hellman Key Exchange 11
2.2.4 RSA . 12
2.2.5 Digital Signatures . 12
2.2.6 Strength of Cryptographic Approaches 12

3 Identification and Authentication 13
3.1 Identification . 13
3.2 Authentication . 13
3.3 Password Security . 14

3.3.1 Time Memory Trade-off 16
3.4 Network Authentication . 16

3.4.1 Kerberos . 16
3.4.2 Station to Station . 17
3.4.3 Perfect Forward Secrecy 17
3.4.4 Certificates . 17
3.4.5 PGP . 18

4 Access Control 20
4.1 Access Control Matrix . 20

2

4.1.1 Access Control List . 21
4.1.2 Capabilities . 21

4.2 Models for Access Control . 21
4.3 Example: Linux . 21
4.4 Multilevel Security, Bell-Lapadula-Model 21
4.5 Multicategory Security . 23
4.6 POSIX Capabilities . 23

5 Malware 24
5.1 Buffer Overflow Attacks . 24
5.2 Introduction to Malware . 24
5.3 Botnets and Targeted Attacks . 25

6 OS Security 26
6.1 Concepts and Reference Monitors 26
6.2 Virtualization and Mandatory Access Control 27

6.2.1 Virtualization . 27
6.2.2 Isolation . 27
6.2.3 Security Enhanced Linux 28
6.2.4 AppArmor . 28

6.3 Use-Case: iOS Security . 28

7 Embedded and Hardware Security 29
7.1 Introduction and x86 Privilege Levels 29
7.2 Isolation and HW-based Attacks 30
7.3 HW-based Security Mechanisms 30

7.3.1 Trusted Platform Module 30
7.3.2 Physical Unclonable Functions 31

8 Software Security 32
8.1 Software Development . 32
8.2 Fuzzing . 33

9 Network Security 34
9.1 Information Gathering . 34

9.1.1 DNS . 34
9.1.2 whois . 34
9.1.3 traceroute . 34
9.1.4 SMTP . 35
9.1.5 Sniffing . 35
9.1.6 Scanning . 35

9.2 Attacks . 35
9.2.1 Routing Attacks . 35
9.2.2 DNS Attacks . 36
9.2.3 Man in the Middle Attacks 37
9.2.4 Denial of Service Attacks 37

3

9.3 Security Mechanisms . 38
9.3.1 DNSSEC . 38
9.3.2 Firewalls . 38
9.3.3 Intrusion Detection . 41

10 Web Security 42
10.1 Transport Layer Security . 42

10.1.1 Handshake Protocol . 42
10.1.2 Record Protocol . 45

10.2 Injection Attacks . 45
10.2.1 Cross Site Scripting . 45
10.2.2 SQL Injection . 46

11 Data Protection and Privacy 47
11.1 Privacy Motivation . 47
11.2 Privacy by Design and PETs . 47

11.2.1 Anonymous Communication: TOR 47
11.2.2 Blind Signatures . 47
11.2.3 Group Signatures . 48
11.2.4 Attribute-Based Credentials 48

4

Chapter 1

Fundamentals

1.1 Motivation and Introduction
The number of catalogued vulnerabilities is rising rapidly over time, ever since
IT existed. Security is all over the headlines both in dedicated news agencies
and in mainstream media. Ransomware attacks are popular recently and have
highly visible and critical targets such as hospitals and large companies. Run-
ning a networked computer system with 100% security is neither feasible nor
possible. But strong security is still achievable, and defending most attackers is
possible.

1.2 Terminology
When talking about “secure” systems, what is usually desired is a “dependabil-
ity”, meaning a system that shows no unexpected or unacceptable behavior. A
dependable system should fulfill multiple goals, including

• Availability

• Reliability

• Safety

• Integrity

• Maintainability

• (Confidentiality)

The three major security goals are Confidentiality, Integrity and Availability
(CIA). The main difference between dependability and security is that the
security is usually assessed from the viewpoint of a potential attack, while de-
pendability is considered in a more general context. Security can be seen as a

5

precondition of having a dependable system. A secure system is a system that
can achieve the three mentioned goals even facing an attacker.

Confidentiality Protection of information against unauthorized access

Integrity Protection against unauthorized change and destruction

Availability Protection against rendering IT resources inaccessible

A threat is defined by a potential error in the system, which could enable an
attacker to violate those objectives. A vulnerability is a concrete fault in
the system that threaten one or more security objective. A threat would be
for example the possibility of a DDOS attack towards a web service, a lack of
resources to cope with the attack is a vulnerability. If an attacker exploits the
vulnerability, this is called an attack.

The concepts of safety and security shall be differentiated.

When analyzing a system with regards to it security, two factors are considered:
The first is threat potential, which estimates the likelihood of each potential
attack against the system. The second is the damage potential, which asks
what the impact to the system would be if an attack succeeds. Likely high-
impact attack scenarios can be mitigated by either reducing the impact of a
successful impact or by taking security measures reducing the likelihood of a
successful attack.

A few more useful definitions:

Identification Assignment of an identifier

Authentication Verification of an identity

Authorization Assignment of permissions

Access Control Protection of resources against unauthorized access

Privacy Protecting personal information

1.3 Attacks and Defenses
1.3.1 Attacks
Attack can be categorized by many measures, like intention, approach or point
of attack.

Categories by intention can be:

Denial of Service Making an IT system unabailable to users

Information Theft Access to confidential information by unauthorized per-
sons

Intrusion Bypassing access control to gain access to a system

6

Tampering Modification of stored or transmitted data

By approach:

• Masquerading

• Eavesdropping

• Authorization Violation

• Loss/Modification

• Denial/Repudiation

• Forgery

• Sabotage

By point of attack:

• Network

• Network services

• Operating system/Applications

• User

Another possible method of categorization is “STRIDE” categorization, which
stands for Spoofing, Tampering, Repudiation, Information disclosure, Denial of
Service and Elevation of privilege.

An attack often follows similar patterns. The first step is collecting information
of the system. This may expose a possible attack vector to the attacker, which
can then be used/tested. This is often repeated, as the first attack is not
necessarily successful. After a successful intrusion the next step is often privilege
escalation. This may allow the attacker to cover their tracks, install back doors,
etc. If the main goal of the attack is not reached yet, this point may be used as
the starting point for the next attack, towards the initial goal.

Understanding and talking about attacks is vital when dealing with security, as
this is the very point we are trying to defend against.

1.3.2 Security Mechanisms and Policies
A Policy is a statement of what is, and what is not allowed. This allows the
distinction into “authorized” and “unauthorized” that we made already.

A Security mechanism is a method, tool or procedure that attempts to enforce
such policies. We can categorize those measures into prevention, detection and
recovery. It is possible to employ multiple measures, for example a gate as a
way of prevention, and a camera pointed at the gate which provides detection
of a successful attack.

7

Security through obscurity or prohibiting reverse engineering and attacking
is not an alternative to real security.

Security mechanisms can never be judged by themselves. During risk assess-
ment, it is always necessary to evaluate the measures in the context in which
they are employed. The security of a system is determined by the weakest link
in the chain.

8

Chapter 2

Cryptography

2.1 Cryptographic Hash Functions and Random
Numbers

2.1.1 Hash Functions
A hash function is defined as a function h : D 7→ S with |D| > |S|. A hash
function is expected to fulfill more desired properties:

• Compression: |D| � |S|

• Chaotic: Maximal change of the hash with minimal change in input

• Surjective: |S| is fully used

• Efficient calculation

Even with those properties, a hash function is not considered a cryptographic
hash function. Even a CRC fulfills those properties. The additional properties
of a cryptographic hash functions are:

One way function: Also called first pre-image resistance, this implies
that given a hash, an input producing that hash can not be computed effi-
ciently.

Weak collision resistance: Also called second pre-image resistance, im-
plies that given a hash h = hash(m), an input m′ 6= m with hash(m′) = h can
not be efficiently found.

(Strong) collision resistance: No m and m′ 6= m can be found efficiently
with hash(m) = hash(m′). In contrast to weak collision resistance, a specific
hash value is not required here.

9

Hash functions can be used in combination with a key in the form of Mes-
sage Integrity Code and Message Authentication Code to provide an
equivalent to digital signatures using symmetric cryptography. The hash based
MAC HMAC is calculated as a hash over a combination of the message with
a key.

2.1.2 Random Number Generators
Pseudo-Random Number Generators PRNGs which produce a deterministic
sequence of numbers from an initial seed are not suitable for cryptographic ap-
plications such as key generation due to their predictability. Non-Deterministic
RNGs exist and often rely on external physical processes like noise in electronic
circuits. They do however often have a low data rate which is not sufficient for
all applications. A combination of a PRNG which is (periodically) seeded by a
true, non-deterministic RNG is an approach used in practice.

Criteria for good RNGs are:

• Statistical distribution as desired

• Independence: No repeating sequences, invariant to environmental condi-
tions

• Speed of generation

• Long periodicity (PRNGs) / Non-reproducibility

2.2 Encryption
One important distinction between encryption schemes is the concept of sym-
metric and asymmetric ciphers. Symmetric encryption is also called secret key
cryptography and relies on the presence of a secret key at both endpoints of the
communication. Asymmetric or public key encryption separates the key into
a public and private key for both parties. Information about the secret key is
never shared, and it can be used to decrypt messages which are encrypted using
the corresponding public key.

The algorithm itself is never considered secret, the security shall only depend
on the secret keys (Kerckhoffs principle).

Additional actors in a encryption scheme that are to be considered are the
passive (eavesdropping) attacker (Eve), the active (man-in-the-middle) attacker
(Mallory) and a trusted third party (Trent).

2.2.1 Symmetric Encryption
Symmetrical encryption approaches usually follow the pattern of using basic
bitwise operations to form building blocks such as Feistel networks which are
then combined or repeated in multiple rounds. A challenge arises when the input

10

of the cipher is of variable length. Stream ciphers are suited to such a problem,
but the more common approach is to divide the input into blocks and use a block
cipher, operating with a fixed input size, multiple time. Simply applying the
same cipher with the same key to each block (electronic code book) however is
not a good approach since repeated blocks in the input will be directly reflected
in the ciphertext. Alternatives include integrating the previous ciphertext into
the next block or including a counter in each block, to avoid repeating inputs
to the cipher altogether.

A standard block cipher used today is the Advanced Encryption Standard AES,
a block cipher with variants for different key lengths such as 128, 192 or 256
bit.

2.2.2 Asymmetric Encryption
Asymmetric encryption makes encryption possible even without a previously
agreed on private key.

2.2.3 Diffie-Hellman Key Exchange
The goal of the DIffie-Hellman key exchange algorithm is to establish a private
key between two users Alice and Bob, without compromising the secret key to
an attacker that has full visibility of the entire communication between Alice
and Bob.

Algorithm 1: Diffie-Hellman Key Exchange
Result: private key k
choose public modulus p (prime);
choose public base g (primitive root modulo p);
begin Alice

choose secret a;
A = ga mod p;
publish A;

end
begin Bob

choose secret b;
B = gb mod p;
publish B;
k = Ab mod p;

end
begin Alice

k = Ba mod p;
end

This results in the same private key k for both Alice and Bob. Generating this

11

private key requires knowledge of one of the secrets a or b, which are only known
to the corresponding party.

Diffie-Hellman itself is not secure against Man-in-the-Middle Attacks. If an
attacker Mallory intercepts the communication, they could perform a separate
key exchange with both Alice and Bob. They would both have a shared key
with Mallory, unaware that the real communication partner is not Alice or
Bob. Mallory can then decrypt incoming messages, read or modify them, and
re-encrypt them using the second key.

2.2.4 RSA
RSA is an encryption scheme which allows encrypted communication without
first establishing a symmetric secret key (using Diffie-Hellman for example).
Each participant calculates both a public key and a secret key. The public key
can be used by any participant to encrypt messages, which can only be decoded
using the corresponding secret key, which is only known to the owner of the
key.

2.2.5 Digital Signatures
If the integrity of a document and identity of the author are of concern, but the
contents are not necessarily encrypted, digital signatures are used. In digital
signatures, the signature is generated for a specific message (usually a hash
of the document) with the private key of the author. The verification of the
signature is possible using the corresponding public key and again the message.
This is similar to the reverse of the public key encryption scheme.

2.2.6 Strength of Cryptographic Approaches
The security of cryptographic algorithms can be categorized in the following
categories:

• Empirically secure: The approach is secure because no attacks against
it have been successful, and analysis has not found a specific weakness

• (Formally) proven secure: The encryption is proven to be a mathe-
matically hard problem

• Unconditionally secure: “An attacker cannot extract any information
from the encrypted text”

The only unconditionally secure approach is the one-time pad, where the
key and message have the same length and a unique, random key is used for
every transmission. Since the key has no inherent correlation, the probability
of recovering any arbitrary plaintext is identical, which makes even brute force
attacks impossible.

12

Chapter 3

Identification and
Authentication

3.1 Identification
The identity of an entity shall have the following properties:

• Uniqueness

• Unchangable Linking

• Lifelong validity

• No Transferability

In order to identify an entity, an identifier has to be defined. The identifier
should meet the above criteria and should be able to determine an identity
within a given context.

Identifiers have the purpose of both accountability and access control. They
can be applied to both subjects (users, processes, ...) and objects (files, URLs,
...), humans and machines, and can be temporary or persistent.

For authentication, a separate proof of identity is usually required:

3.2 Authentication
Authentication is the process of confirming whether a second party is indeed
who they claim to be, to a specified level of confidence. There are three basic
forms of authentication:

• Something you know (passwords)

13

• Something you have (smart cards)

• Something you are (biometrics)

Combinations of those increase the security (Multi-Factor-Authentication).

Password Authentication is based on the something you know factor. Ex-
amples include unix passwords, PINs or secret code words. They can also easily
be used to authenticate groups, by distributing the password to every entity in
the group. A weakness of passwords is that an attacker can learn and reuse it.
A possible solution are one-time passwords.

One-time Passwords are only used once, an example would be a TAN list
for online banking. They can also be part of a challenge-response-protocol,
where the two parties agree on a secret function beforehand, and authentication
happens by verifying the function response to a challenge.

Hardware Tokens take a similar approach in generating some kind of one-
time use token, but those are generated by dedicated hardware, shifting the
factor to something you have. They might have an additional input such as a
pin, or, as in the case of popular 2FA solutions, the current time. The HOTP
(HMAC-based One-Time Password algorithm) generates short time passwords
using a counter (time) and a pre-shared secret key.

Biometric Authentication has to be differentiated into verification and
recognition. In verification, the used specifies its identity, and the system au-
thenticates the used if biometric verification succeeds. In recognition, the system
recognizes the user amongst multiple known users without further input.

Biometric authentication systems can fail in two ways: False negative means
that a user is incorrectly rejected, a false positive means that a user is wrongly
accepted. The threshold on accepting a authentication attempt has to be chosen
in a application specific way, depending on which fault is more acceptable.
Figure 3.1 shows the relationship between the False Acceptance Rate and False
Rejection Rate with a varying threshold. A measure of the security of the
authentication system could be the Equal Error Rate.

3.3 Password Security
Passwords which are short or badly chosen can easily be cracked. Brute-force or
dictionary attacks guess the password either randomly of from a list of known
(pass-)words. Brute-force attacks are easily feasible for passwords up to ~8
characters in length, useful rules on possible guesses and dictionary attacks can
lead to success for even longer passwords. An advantage for the attacker is when
the attack can be executed offline, such as by stealing the file containing the

14

0 1

0.2

0.4

0.6

0.8

1

threshold

er
ro
r
ra
te

FAR
FRR
EER

Figure 3.1: False Acceptance Rate and False Rejection Rate for biometric au-
thentication

password hashes. This removes the bottleneck of the authentication mechanism
of the target and allows for distributed attacks.

A common protection measure is to use a SALT. A salt is a random value that
gets appended to the password before hashing, and then gets stored alongside
the password hash. While this does not protect a single password against the
mentioned attacks, it prevents reuse of a hash that has already been calculated.
Otherwise, it would be possible to just compare the hashes to known hashes of
popular passwords.

Another consideration is access to the password hashes. While the actual cryp-
tographic security is only influenced by the hash function, preventing offline
attacks by properly protecting the hashes forces the attacker to execute much
slower online attacks. Those online attacks can be slowed even further by limit-
ing the number of invalid authentication attempts or introducing an increasing
delay after failed authentication attempts (back off), and by using “slow” hash
functions. The previously popular measure of password aging (requiring pass-
words to be changed after a certain amount of time) is discouraged, since it
promotes the use of weak but easy to remember passwords.

Other attacks focus on the specific implementation of the authentication mecha-
nism and exploit vulnerabilities that allow login even without actually obtaining
the correct password, or allow changing or resetting passwords even with insuf-
ficient privileges.

15

3.3.1 Time Memory Trade-off
In attacks on passwords a trade-off between time and memory has to be made,
the two extremes being the brute-force attack and the fully pre-calculated dic-
tionary/codebook attack.

One possible solution is a Variable Length Lookup Table. Those rely on
hash chains: For many initial values, a chain of hashes (length nmax) each is
calculated. Only the initial and end-value are for each chain is then stored.
When a certain hash shall then be cracked, it will be hashed nmax times until a
chain is found which end-state matches the calculated hash. Once the chain is
found, it can be restored using the stored initial state which results in a chain
containing the to-be-cracked hash and the password as the state immediately
preceding that value.

An improvement to lookup time can be made by making the chains variable
length, and introducing an end criterion, for example a certain number of zero-
bits at the end of the hash (Distinguished Codepoints). This reduces the
number of end-lookups significantly.

Duplication arising from hash collisions are addressed by Rainbow Tables: A
round-specific reduction function (hash space →password space) is introduced.
So even if a state is already present in a different chain (but at another round
in the chain), the original chain continues separately.

3.4 Network Authentication
The challenge of network authentication is that the communication has to be
established over an insecure channel. Passwords shall not be transmitted as
plaintext, but in encrypted form. Thus the problem quickly changes from au-
thentication to a key-distribution problem.

3.4.1 Kerberos
Kerberos is a network authentication protocol using symmetric cryptography.
It is best explained using an example:

Each organization has one authentication server, also called key distribution
center, and a ticket granting server TGS. The TGS hands out the authorization
to clients to use a certain service. This is done using tickets. A ticket for a
client to access a service includes a specific session key, the identity of the client
and a validity period. The ticket is encrypted using a key that only the TGS
and the service know. The client can not decrypt the ticket.

If a client A wants to access a service B, A first contacts the authentication
server. The server then provides A with a session key between A and the TGS
(encrypted using As password), and a ticket for the TGS which can provide
TGS with the session key to talk to A.

16

The TGS can now provide A with a session key between A and B, and a ticket
for B that provides B with the session key.

Now A and B have a shared session key, and they can communicate.

Criticism of kerberos include the centrally controlled servers, and reliance on
synchronized clocks for timestamps. Session keys are known to the servers, not
only to the client and service. Also, the first message is not authenticated,
opening multiple attack vectors.

3.4.2 Station to Station
It has already been established that Diffie-Hellman is susceptible to man-in-the-
middle attacks (section 2.2.3). A solution is to authenticate the public keys A
and B using digital signatures.

The station to station protocol now requires verification of signatures after ex-
changing the public values A and B: Bob signs both A and B with his private
signing key, Alice signs both A and B using her private signing key. The sig-
natures are encrypted using the shared secret key. Verification of the signature
now assures each party that no man in the middle who is exchanging the keys
is present.

This assumes however that the public signature verification keys are already
known.

3.4.3 Perfect Forward Secrecy
Perfect forward secrecy is given when the compromise of a long term secret such
as secret keys does not compromise the security of short term secrets used in
the past.

3.4.4 Certificates
A digital certificate links some public key to a person. The certificates generally
includes the public key, some identifier and a validity period. All this is signed
by the signature generation key of a trusted third party (certification authority
CA). This certificate can then be verified if the verification key of the CA is
known.

The certification authorities play an important role in the public key in-
frastructure. Usually a number of CAs exist, which all operate under some
root CA. The root CA signs the public keys of the other CAs and such verifies
the validity of the CA. Those CAs can then sign public keys of users, after
verifying their identity.

The public key of the root CA has to be transmitted using a secure channel.
This is usually done by distribution via operating systems and browsers.

17

X.509 Certificates

X.509 is a standard for digital certificates. It specifies that the identifier is in
the hierarchical distinguished name (DN) naming format. It also specifies the
fields in the certificate:

• Version

• Serial number

• Signature algorithm

• Issuers DN

• Validity interval

• Subjects DN

• Subjects public key

• Issuers unique identifier

• Subjects unique identifier

• Extensions

• Signature

Extensions can for example control the key usage (signing emails, TLS web
server, etc).

PKIs have several problems, which become evident if a CA gets compromised.
This allows the attacker to for example issue certificates for any domain. The
number of CAs commonly in use is large, and many use weak security.

3.4.5 PGP
Pretty Good Privacy PGP provides an alternative approach to trust in a decen-
tralized fashion. It relies on the concept of users singing each others keys. Each
user has a keyring of public keys and signatures on them. If a user receives a
public key which is signed by many users they trust, they might also trust the
new public key.

There are different notions of trust: Owner trust is the value of trust someone
assigns to a key in the keyring. Completely trusting a key implies also trusting
the other keys signed by this key.

Calculated trust answers the question of whether to trust a public key that
was used. A chain of signatures is required, starting with some public key in
the keyring and ending with the key in question.

Key legitimacy is calculated as

L = x

X
+ y

Y
(3.1)

18

with x being the number of signatures with “marginal” trust, y the number
of signatures with “complete” trust and X and Y the required corresponding
number of signatures.

19

Chapter 4

Access Control

Access control combines authentication and authorization. Chapter 3 showed
how the identity of a subject can be confirmed, the question is now whether the
subject is authorized to access a specific resource. This decision is generally
performed by a reference monitor, on the basis of some access policy, which
may be set by an administrator or the owner of the object.To differentiate the
terms subject and object:

A subject is the acting entity, which intends to carry out an operation requiring
access. Examples include persons, processes or network nodes. A subject can
also be the object of an access operation at another time.

An object is the unit that is being accessed. Examples include files and directo-
ries, database records, computers, processes, mailboxes or applications.

The access operation is the type of operation of a subject in relation to an
object. Different sets of access operations can be defined. A file system might
for example define read and write operations (or observe and alter). There
might be additional operation like execute or append, which can be handled
independently.

4.1 Access Control Matrix
The access policy can be described using an access control matrix. The matrix
contains the set of every allowed operation for every possible pair of subject and
object. This however immediately presents a problem, as this approach scales
badly. For N subjects (users) and M objects (files), a N ×M matrix would
have to be stored.

Two implementations of the access control matrix may be more appropriate
depending on the application:

20

4.1.1 Access Control List
In an Access Control List (ACL), a list of subject-operation pairs is stored with
each object. A file might for example contain a list of all users that have access
to that file, and which exact operations they are allowed to execute on the file.
If a user is not allowed to interact with the file in any way, the entry may be
omitted.

4.1.2 Capabilities
In direct contrast to the ACL, in a capabilities based system the subjects contain
a list of objects and the corresponding operations which the subject is authorized
to execute on the object. In the file system example, each user would contain a
list of files which the user is allowed to access.

4.2 Models for Access Control
More detailed access control models are in use:

DAC Discretionary Access Control is the approach as explained above. Ac-
cess control decisions are based on a subject and object. Subjects define
the access rights of an object (file owner for example).

MAC Mandatory Access Control is oriented towards clearance levels, as one
might expect in a government or military setting. The access rights are
usually defined system-wide, and are not changed by a subject. More
information on this in section 4.4.

RBAC In Role Based Access Control access to objects is not defined per
subject, but per role. Roles are given to subjects, and may change.

ABAC Attribute Based Access Control is even more abstract, where both
subjects and objects have attributes, and access control decisions are made
by flexible comparison of attributes.

Real world systems often implement aspects of multiple of those models, and
no model is the best or definitive answer to access control.

4.3 Example: Linux
Linux access control, ACLs

4.4 Multilevel Security, Bell-Lapadula-Model
In multilevel security, both objects and subjects are classified. Classes may for
example be Unclassified, Confidential, Secret and Top Secret. Access is only

21

granted if the subject has at least the same classification as the object. Access
is denied if the subject has a lower classification than the object. The Bell-
Lapadula-Model is an implementation of this access control model:

To define this model, consider a set of subjects S, a set of objects O and the set of
operations A = {execute, read, append,write}. For two security levels a, b ∈ SL,
there always exists a greatest lower bound l ∈ SL : (l ≤ a, l ≤ b and lminimal)
and a least upper bound h.

The system is in a state at all times. A state is a triple (b, M, f) with

• b ⊆ S ×O ×A the set of current accesses

• M = (Mso)s∈S,o∈O the current access matrix

• f = (fs, fc, fo) with

– fs : S 7→ SL the maximum clearance of each subject

– fc : S 7→ SL the current clearance of each subject (this requires
fc(s) ≤ fs(s) for each subject s)

– fo : O 7→ SL the security classification of each object

The current clearance fc is chosen by each subject, within the limit set by the
maximum clearance fs.

A state is secure, if the following properties are met:

• Simple Security Property: For all (s, o, a) ∈ b with a = read or a =
write: fo(o) ≤ fs(s) (Each subject which is currently reading or writing
has the necessary maximum clearance)

• *-Property:

– For all (s, o, a) ∈ b with a = append: fc(s) ≤ fo(o)
(No append operation is executed with higher clearance than the
object)

– For all (s, o, a) ∈ b with a = write: fc(s) = fo(o)
(Each write operation is executed with minimal clearance)

– For all (s, o, a) ∈ b with a = read: fc(s) ≥ fo(o)
(Each read operation is executed with a sufficient current clearance)

This property enforces the correct selection of the current clearance fc.
Appending happens “upwards”, writing on the same level, and reading
“downwards”.

• Discretionary Security Property: For all (s, o, a) ∈ b: a ∈Ms,o

22

4.5 Multicategory Security
multi category security

4.6 POSIX Capabilities
POSIX capabilities are an implementation of a capability based access control
scheme. An example would be the right to open raw sockets on linux, which is
usually reserved to the root user. This is however necessary for the ping utility,
which should be accessible to every user, even without setting the setuid bit on
the binary. The POSIX capability system now allows giving the specific right
to open raw sockets to the specific binary. This also adheres to the principle
of least privilege a lot better than always executing ping with full root rights.
Capabilities are also not reserved to files, but can be given to individual processes
as well.

23

Chapter 5

Malware

5.1 Buffer Overflow Attacks
Buffer overflows are one of the main security vulnerabilities found today. Mod-
ern mitigations make them not as trivial in practice as in theory. The most
common form is a stack overflow. The goal is to overwrite the return address
of the current stack frame, usually by exploiting unchecked array-access which
allows writing to the address where the return address is located. The attacker
could instruct the program to return to a different part of the program, for
example skipping authentication checks. If write access to an executable page
is also present, the attacker could also first inject code and then jump to that
code, executing arbitrary instructions. If the place of the injected shellcode is
not known exactly, one technique is to insert NOP instructions before the actual
exploit (NOP sled).

Mitigations include canaries, which are values placed between the variables and
return address on the stack to indicate buffer overflows. Injection of shellcode
is usually protected against by not allowing memory pages with both write and
execute permissions. Type-safe languages also offer features making access to
memory outside of variables impossible. Address space layout randomization
makes guessing memory locations more difficult.

5.2 Introduction to Malware
Malware is a generic term for software, which is designed to perform a function
undesirable or harmful to the user. Categorization of malware is possible by the
approach of spreading:

• A virus is a program which spreads by abusing other (harmless) programs

• A worm spreads autonomously over a network

24

• A trojan disguises itself as a harmless program

Especially malware that spreads over the network can be further categorized, the
main distinction being the amount of interaction a user has to perform in order
to be infected, which can lead from downloading and opening an attachment to
only visiting a website or even zero-interaction vulnerabilities.

Initial infection may also happen completely offline, for example via the “lost
USB stick” tactic in a more targeted attack.

The malicious payload can assume many forms and achieve a multitude of goals.
Some examples of payload functionality include:

• Deleting data

• Spying, exfiltrating data

• Enabling remote access

• Denial Of Service (DOS)

• Physical damage

• Encryption of data (and demanding ransom)

• Abusing resources (crypto mining)

More often than not, those are motivated by financial gains, which is apparent
with the recent waves of large scale ransomware attacks.

Malware may also be categorized into mass infection and targeted attacks (Ad-
vanced Persistent Threat APT). While the former is focused entirely on max-
imizing the number of infected hosts, the latter is focused on a specific tar-
get.

5.3 Botnets and Targeted Attacks
Botnets are established with no particular payload. The initial infection happens
with a dropper, which connects to a command and control server. The actual
payload is then downloaded from this server, which allows the botnet to be
rented out to perform a number of different attacks that all benefit from a large
amount of infected machines.

25

Chapter 6

OS Security

Operating system- and host-security has the goals of protecting stored data,
running processes and the operating system itself. This necessitates some form
of authentication, to distinguish between users on a multi-user system, as well
as an access control system which assigns permissions to users. A useful concept
applied here is isolation, which is applied to users and processes. Raw hard-
ware access is usually restricted, and only allowed to privileged code within the
operating system. Protection against external access may also be part of host
security.

A core problem of host security is the confinement problem: The problem
of preventing a server from leaking information that the user of the service
considers confidential.

6.1 Concepts and Reference Monitors
A reference monitor is an abstract machine which mediates all accesses to
objects by subjects (see chapter 4). Reference monitors can be implement on
any level of the system. Reference monitors in the systems hardware include the
MMU and privileged execution modes. Kernel level reference monitors are for
example implemented in the file system or capability system. Applications can
also contain reference monitors, which may be the case in web server applica-
tions, or run completely inside another program which implements a reference
monitor such as the Java virtual machine or a database engine.

The security kernel is the hardware, firmware and software of a trusted com-
puting base which implements the reference monitor. It must mediate all ac-
cesses, be protected from modification and be verifiable as correct.

The trusted computing base (TCB) is the totality of protection mechanisms
within a computer system. This includes hardware, firmware and software which

26

is responsible for enforcing a security policy. The enforcement of the security
policy must only depend on the TCB, the rest of the operating system need not
to be trusted.

6.2 Virtualization and Mandatory Access Con-
trol

6.2.1 Virtualization
There exist many reasons to use virtualization, but the goal of virtualization
from a security perspective is full isolation of systems and applications. The
possibility to roll back an entire system to a known-good state in case of com-
promise also presents an advantage.

Levels of virtualization are distinguished based on the role and position of the
virtual machine monitor VMM. In native virtualization, the VMM di-
rectly interfaces with the hardware. In user mode virtualization, the VMM
only interfaces with the host OS, and not directly with the hardware. A hybrid
approach is dual-mode virtualization, where a host OS exists, but some form
of direct access to the hardware by the VMM is possible.

The interaction of the VMM with the guest OS provides another way of catego-
rization: In full virtualization, the guest OS runs unmodified, as on real hard-
ware. This is usually assisted by various hardware extensions such as AMD-V
and Intel VT-x, special support by the MMU and passthrough of system busses
such as PCI.

Paravirtualization refers to a mode of virtualization in which the guest OS is
aware of the virtualization and has some adaptations to the host OS. Hardware
drivers for example can be replaced with components that directly interface
with the VMM.

6.2.2 Isolation
Isolation is the main benefit of virtualization from a security perspective. Errors
in applications can be contained effectively, programs with different security re-
quirements can be separated, and malware analysis is possible without effecting
the host system. The host system can employ detailed monitoring, and perform
effective intrusion detection from the outside. The isolation of common depen-
dencies between applications prevents the compromise of multiple applications
by compromise of the common dependency.

As an example, a payment processor may be located in a dedicated VM with a
secure operating system. The non-critical application such as a frontend which
exposes a large attack surface runs in a separate VM and interfaces with the
payment application only through a closely monitored interface.

27

6.2.3 Security Enhanced Linux
Linux provides the Linux Security Module (LSM) interface. Once a user
triggers a security sensitive activity in the kernel through a syscall (for example:
read), the LSM hook is executed, which the LSM module registers. The LSM
module can then for example deny the filesystem access. SELinux is such a
module. SELinux supports a variety of mandatory access control schemes, the
main one discussed here is type enforcement. The idea is that both subjects
and objects are assigned security labels. A central security policy determines
which subjects can execute which operations on the objects based on the labels.
The acting entity is always a process. Processes are assigned to domains,
for which access rules to objects are specified. SELinux supports two modes of
handling processes without a specified domain: assigning all of those to a default
unconfined domain or creating an individual domain for each process.

Files are tagged with security labels. The label my include a user identity, role,
type or domain. The last field implements the type enforcement: for regular
files, this expresses the type of the object, but for executables this determines
the domain of the process once it is executed.

Beyond the simple type enforcement, roles can be defined. Users can have roles,
and users can change the current role if they have sufficient privilege. Specific
rights can then be given to specific roles.

Multi-category and multi-level security is also implemented in SELinux, imple-
menting the Bell-Lapadula model (see section 4.4).

6.2.4 AppArmor
AppArmor: describe example from video 6b

6.3 Use-Case: iOS Security
iOS Security

28

Chapter 7

Embedded and Hardware
Security

Security in embedded systems is of special concern. Embedded systems are
often harder to patch, and often have direct real-world impact, sometimes in
a safety critical way. Non-mainstream operating systems are in use, and the
CPU might not offer all desired security features (see below). This results in a
large attack surface on a system that is not as well understood security-wise as
desktop- or server applications.

In the following, security will be considered from a lower level than before,
down to the hardware. Many of the security measures considered before can be
circumvented if lower-level access is present. Access control on a file system for
example is worthless if the attacker can connect the disk to another system and
dump all the contents. Software security is difficult if it relies on libraries that
can be exchanged by an attacker.

Placing security mechanisms at the lowest possible layer circumvents those at-
tacks.

7.1 Introduction and x86 Privilege Levels
At any point while an x86 processor is executing instructions, it is in some
privilege level or protection ring, usually indicated by a number where
higher numbers represent less privileged execution:

(-1) Virtual Machine Monitor, Hypervisor

0 Operating system kernel

1 Rest of the operating system

29

2 I/O Drivers etc.

3 Application software

Switching to a lower privilege level must be protected, while switching to a
higher level (less privileges) is usually easy. One important feature made possible
by this is protection of memory segments. Each memory segment contains a
Descriptor Privilege Level DPL, and each process is assigned a privilege level.
If the Current Privilege Level CPL > DPL, the CPU generates a protection
fault and prevents access to memory accessible only to lower privilege levels.
This for example prohibits applications from modifying operating system data
structures.

Upgrading of the privilege level (setting it to a lower value) may happen for
example when a syscall is initiated and execution is passed to the operating
system. This provides a well defined “gate” to those privilege levels.

In order to prevent an application to misuse the privilege level of the syscall,
by for example instructing it to copy data into the process that the application
would otherwise not have access to, an additional Requested Privilege Level may
be introduced (confused deputy problem).

7.2 Isolation and HW-based Attacks
The privilege levels introduced above provide a means of isolation between the
operating and user programs, often called userspace and kernelspace. Isolation
is often advantageous to security as it provides a barrier with defined interfaces
between components. A ubiquitous form of isolation is that between multiple
processes on a single computer. Address space, access rights and file descriptors
are completely separate for multiple processes. Special security-critical functions
such as handling of private keys may even be delegated to a dedicated hardware
security module.

Attacks which circumvent those measures and leak data through channels other
than the predefined interfaces are called side-channel attacks: Such side-
channels may be for example power consumption or electromagnetic emission
of a device. Countless such side-channels have been found, with varying degree
of real-world usage. Most mitigations against such attacks have been broken
by even cleverer side-channel attacks. Recent examples of side-channel attacks
exploit interference between adjacent DRAM cells in main memory or cachelines
that don’t get evicted after branch prediction has failed.

7.3 HW-based Security Mechanisms
7.3.1 Trusted Platform Module
IDK, seems like something the copyright-industry would come up with...

30

7.3.2 Physical Unclonable Functions
See Rührmair et. al.

31

Chapter 8

Software Security

Development of secure software impacts all areas of software development. Be-
fore implementation, analysis of requirements includes identifying threats, risk
and potential damages. The system design shall adhere to principles such as de-
fense in depth, reduced complexity and the principle of least privilege. Features
such as authorization and authentication as well as secure data storage have to
be considered during the design phase, and are often much more difficult to add
at a later stage.

The implementation should make use of coding standards and best practices to
avoid common errors. The programming language, compiler, IDE or analysis
tools can help with those tasks.

Various forms of testing and verification are vital to ensure the software performs
as expected, which is absolutely necessary in order to even consider the security
of the system. A special case of testing, fuzzing, is explained in more detail in
section 8.2.

8.1 Software Development
The goal during development of secure software is to prevent vulnerabilities in
the program. A vulnerability is a particularly severe security flaw. Flaws in
software can be categorized:

• Errors are mistakes a developer makes during design or implementation.

• Faults or Bugs are errors in the code.

• A Failure is a deviation of a program from the specified or intended
behavior.

32

Functional testing is used to look for failures, with the goal to avoid faults
and bugs which can cause the program to fail during normal operation.

Security testing searches for faults and bugs that lead to security vulnera-
bilities. Those bugs often don’t result in a failure during normal use, but may
be exploited by an attacker.

The most typical software flaws include improper handling of user input and
out-of-bounds memory accesses.

Some software is particularly critical. This includes all software that is exposed
to external entities, by interacting with the network or accepting input from
the user. Software that runs with high privileges is critical in so far that a
compromise could easily lead to compromise of the entire system. Similarly,
software in which a failure has critical consequences such as software handling
confident data or critical infrastructure needs to be especially protected.

Multiple crucial design principles can be identified:

• Segmentation ensures that in case of inevitable eventual compromise, a
breach is contained to a specified part of the system.

• The least privilege principle states that each system shall have the least
required amount of privileges, in order to defend against easy privilege
escalation.

• Defense in depth refers to the type of segmentation, in that a architec-
ture consisting of multiple layers of abstraction is easier to protect.

• The low complexity principle refers to the fact that the simpler a system
is organized, the easier it is to find errors and spot design mistakes.

8.2 Fuzzing
Fuzzing is a way of automated testing of software that accepts some kind of
input. It consists of brute-forcing different input values and combinations until
the program crashes or some fault is detected. This enables finding edge-cases
which are not handled in the program and might lead to a vulnerability.

33

Chapter 9

Network Security

9.1 Information Gathering
The first step in attacking a networked environment is always to gather infor-
mation on how the network is structured, and which connections, hosts and
segments exist. It is important to know which services exist, as they might rep-
resent possible attack vectors. The next step is identifying vulnerabilities, and
exploiting them. This often includes searching for systems with known vulnera-
bilities. What follows is often some measure to ensure permanent control, such
as the installation of a rootkit or backdoor. This process may then be repeated
to gain control to additional systems.

9.1.1 DNS
DNS exposes a lot of information about a network. Brute-forcing reverse DNS
lookups for a targets IP range reveals domains or hostnames, which often reveal
the purpose or service of a system.

9.1.2 whois
whois provides information about an IP range, specifically details about the
organization and administrator responsible. Privacy regulations make it possible
to vastly reduce the information visible nowadays.

9.1.3 traceroute
Network topology can be examined using traceroute. This tool uses ICMP
packets with increasing TTL to find the address of each intermediate router
between the source and a target address. Executing this from multiple hosts to
multiple targets enables mapping the complete network.

34

9.1.4 SMTP
9.1.5 Sniffing
Tools such as tcpdump or wireshark allow passive recording and decoding of
network traffic. This allows direct retrieval of information transmitted in plain-
text, and a lot of information even with encrypted communication through
metadata.

9.1.6 Scanning
Active scanning of hosts and networks is possible through tools like nmap. The
goal is usually to find out on which TCP or UDP ports there are applications
listening.

TCP connect scanning simply tries to establish a TCP connection with the
target. The typical packet sequence in a successful case would be SYN, SYN/ACK,
ACK. If no application is listening, the sequence would be SYN, RST/ACK. This
scanning technique is fast and easy to execute, even for non-superuser users.
Disadvantages include that this only works for TCP, and is easy to detect even
on application level.

TCP SYN scanning is an alternative where no complete TCP session is ever
created. If the port is open and the target responds with SYN/ACK, the connec-
tion is immediately aborted with RST, not completing the three-way-handshake.
This never creates a connection that the application receives, making it a lot
more difficult to detect. This however also only works for TCP, and additionally
requires superuser privileges to execute.

9.2 Attacks
The TCP/IP family of protocols was not designed with security as an objective.
Various different attacks are possible:

9.2.1 Routing Attacks
Attacks on routing protocols can facilitate redirection of traffic through the
attackers systems, or blackhole the traffic for a denial of service attack. Routing
protocols currently in place are not very security focused, OSPF for example
uses simple authentication using plaintext passwords and MD5 hashes, BGP4
relies on manual filters for incoming information.

Inside a subnet, techniques such as ARP spoofing are possible, which allow
redirection of traffic to the attackers machine just by responding to ARP queries
for the corresponding IP address (or the gateway). DHCP replies can be forged
in a similar way.

35

9.2.2 DNS Attacks
DNS attacks are of special importance since basically all internet communication
relies on DNS during initialization of the connection. If the attacker controls
the DNS server, they can redirect traffic intended for a specific domain to a
malicious server. One method of attacking is DNS cache poisoning:

DNS makes use of a hierarchical architecture, and various levels of caching to
ease load on the root and authoritative servers. The attacker targets such a
caching server by triggering it to refresh the cache, for example by querying a
targeted domain, and then immediately delivering a malicious response which
then gets stored in the cache. While refreshing a cache entry, the server sends
a request with a specific query ID to the upstream server. For a response to
be accepted, the query ID has to match, but it is not verified in any other way
if the reply indeed originates from an upstream server instead of a malicious
attacker.

The query ID is traditionally simply incremented each request, which means
the attacker could easily guess it by querying the server for a domain, to which
they own the authoritative name server, and assuming that the query ID for
the to-be-poisoned request will be a subsequent number. The attacker will send
multiple replies with different query IDs, with a high probability that one of
them matches. If the reply arrives at the cache before the legitimate reply, the
attack has succeeded.

The challenges to the attacker are so far:

• The entry must not be in the cache already

• The correct query ID must be guessed

• The response must arrive before the legitimate response

The most straightforward fix is to implement cryptographically secure random
query IDs.

It is however still possible to take over an entire nameserver/zone: The goal here
is to corrupt the cache entry for the authoritative nameserver in the caching
nameserver. Requests to the victim nameserver can be made for any non-
existing subdomain the target nameserver is responsible for. In the forged
response, a NS record is present containing the domain of the legitimate au-
thoritative nameserver, but the accompanying A record points to a server the
attacker controls. The ability to use arbitrary subdomains that will not be
cached makes guessing the query ID feasible, combined with the fact that it is
only 16bit long.

Additional mitigations include using the port number of the request as an ad-
ditional identifier, but this does only increase the effort in guessing, it does
not solve the underlying problem. A long term solution is DNSSEC (sec-
tion 9.3.1).

36

9.2.3 Man in the Middle Attacks
The objective of a man-in-the-middle attack is to infiltrate an existing or new
connection. Both endpoints think they communicate with each other, when
they are actually both communicating with the attacker. The attacker can
then both record and modify the traffic, and this can even work with encrypted
connections. If the attacker spoofs the IP of a target web server for example,
the client establishes a TLS connection, and the real web server receives an
incoming TLS connection, but both connections are separate and are terminated
at the attacker. A mitigation is exchanging certificates while the connection is
established. The certificate is signed (transitively) by a root CA, which has a
public key that is known to the client in advance, usually by distribution with
the operating system or browser. The user can then be warned if the server
did not send a certificate, or sent a certificate that is not signed by a known
CA.

9.2.4 Denial of Service Attacks
A wide variety of DOS attacks exist at every level of a system. All those
have one goal in common: to deplete some resource of the system, making it
unavailable.

In network settings, DDOS, distributed denial of service, is often considered.
Here, the attacker makes use of a large number of hosts, via a botnet for example,
to overwhelm the target with traffic from many sources. This makes this type
of attack possible even if every attacking system is a lot less powerful than the
target. Those attacks usually target the network connection or server resources
(CPU, memory, etc) of the victim.

Multiple types of network DOS attacks exist, but one example is SYN flood-
ing: The client sends a massive number of TCP SYN packets to the target,
but never answers with ACK, establishing a connection. This results in the
server saving a status for each half-established connection, which starves its
resources.

Protection against SYN flooding is provided by SYN cookies: It avoids saving
state when a SYN packet arrives. This is done by using the sequence number in
the TCP packet, which gets incremented whenever a packet is sent. One does
not however has to start at 1 or increment by 1. The server inserts a value into
the sequence number of the SYN/ACK which can be used later to recognize that
packet. This is generated using a hash function that takes information like the
current time, the host IP and port as well as a server secret as input. The client
is expected to increment this by 1 when returning the ACK. When the server
receives it, it can “decrypt” or reconstruct the value to verify that the client has
sent a SYN before.

General protection measures against DOS attacks include special hardware ap-
pliances which monitor the traffic and protect against unusual amounts of traffic,

37

overprovisioning of servers and use of scalable cloud resources and CDNs.

Difficult to protect against are low-and-slow attacks, which try to slow down
a server by sending specially crafted packets which are known to trigger slow or
performance intensive operations on the target.

9.3 Security Mechanisms
In addition to the aforementioned protective measures against specific attacks,
this section goes into detail on DNSSEC, and the more general topics of firewalls
and intrusion detection.

9.3.1 DNSSEC
The basic idea of DNSSEC is that the authoritative servers sign the records using
asymmetric cryptography. The caching resolvers can then verify the signatures.
The required key-hierarchy lends itself to the hierarchical model which is already
in place with DNS. A server signs its records with a zone signing key, which
is signed using the servers key signing key. A hash of the KSK is available
at the parent zones nameserver, making it possible to verify the identity of the
server up to the root zone.

Solutions such as DoT and DoH introduce TLS and HTTPS as transports for
DNS, with the goal of privacy. It is however questionable how useful such
measures are, as they only delegate the problem to the operator of the DNS
server.

9.3.2 Firewalls
Firewalls reduce the attack surface of a network by reducing its exposure to the
internet as a whole. A firewall is a network component which separates multiple
network segments from each other. Traffic between the networks is controlled
according to a security policy.

Firewalls often filter packets, which is done on multiple levels:

• Virus-/Java-/ActiveX filter for email and HTTP: This provides a similar
approach as local antivirus software may take, but at a centralized loca-
tion. Those filters can however be easily circumvented, using encryption
or even just unusual compression methods.

• Content filters, which scan for specific addresses or keywords

• Anti-Spoofing filters which remove packets with forged addresses (such as
IP spoofing)

A firewall can however perform a lot of additional functions:

• Logging

38

• Authentication

• Enforcement of data protection

• Network Address Translation

All those functions and requirements indicate that the firewall is closely related
and integrated with routers, gateways on multiple levels, logging facilities and
services providing authentication and security policies.

Security policies

An important decision in firewall configuration is the base policy. It specifies
how traffic is handled, for which no more specific rule exists.

Default-Deny specifies that access is usually prohibited unless it is explicitly
allowed. The list of allowed services is provided by the administrator. This
makes deployment of new services difficult, and may frustrate users since a lot
of services are not available.

The alternative is Default-Allow, where access is usually permitted unless
explicitly prohibited. This has the disadvantage from a security perspective
that all potentially dangerous services have to be blocked, which is usually not
known in advance.

Filtering

Network level filtering can be done on layer 3 or layer 4: Layer 3 filtering works
on IP datagrams and is based on the source and destination addresses. Layer 4
filtering can additionally take the port number and direction of connection (in
case of TCP) into account.

Application level filtering is sometimes referred to as deep packet inspec-
tion, and can make protocol specific decisions such as allowing only certain
HTTP methods or URLs, or block emails to a specific domain even when being
transmitted to a common mail server.

Packet filters are usually fully transparent and as such independent from the
user, and can be implemented highly performant. Disadvantages include poor
logging capabilities, difficult to set-up rules, and difficult to filter protocols
which may require stateful inspection, and usually no interpretation of streamed
data.

Application Gateways / Proxies

Gateways or proxy servers prohibit direct transfer of data via lower levels, but
require a proxy for each application protocol, which implements that protocol
and inspects the data, before forwarding it. This automatically realizes the
default-deny policy. It also makes it possible to authenticate the user, handle

39

user sessions and interpret data streams. The application specific nature fa-
cilitates detailed logging and convenient to set-up filter rules. The gateway is
however not transparent to the user, requires a separate proxy for each service
or application and thus usually operates with lower performance.

Firewall Architectures

In addition to a simple packet filtering router, which may be implemented by
a dual homed host, firewall architectures often include a demilitarized zone
(DMZ). This is a special area within the firewall, which contains servers that
need to be accessible from the internet. An architecture with an application
gateway places the gateway in the DMZ. Incoming and outgoing traffic passes
through the screening router, which redirects it through the application gate-
way.

Multiple routers may be placed in the DMZ, usually an exterior router between
the internet and the DMZ, and an interior router between the DMZ and the
LAN. This makes the DMZ a screened subnet. Separating the routers provides
multiple advantages, for example increased resistance towards DOS from the
internet (interior router not affected).

Multiple such levels of screening are possible, for example with dedicated zones
for servers requiring external access, and for servers that are only accessible
from the internal LAN, with an intermediate router in between.

IP Tables

iptables is a software packet filter in linux. It contains multiple set of rules
depending on the path a packet takes.

Ingress is always controlled by the rules for the prerouting chain, egressing pack-
ets pass through the postrouting chain.

Packets destined for a local process, or originating process go through the input
and output chains, packets that pass through the system are handled by the
forward chain.

For each chain, the behavior is configured using the tables filter, nat (Network
Address Translation) and mangle (modification of packets). Nat is not relevant
for input and forward, filter is not relevant for pre- and postrouting.

Each rule in a table contain amatch parameter specifying which packet it applies
to, and an action to be taken for matching packets. Matching rules can have
many criteria, including data quotas, rate limiting, and to tome extent deep
packet inspection.

40

9.3.3 Intrusion Detection
The objective of intrusion detection systems is to detect an ongoing attack on
a computer or network. Distinction can by made by place of installation or by
type of detection.

Distinction by place of installation:

• Host based: Installed on monitored system, evaluates information from
the operating system, and detects attacks only on this specific system.

• Network based: The system connects to the network at one or multi-
ple (central) points and evaluated the network traffic. It detects attacks
against the network and hosts within the network.

Hybrid approaches of Host-IDS (HIDS) and Network-IDS (NIDS) are possi-
ble.

Distinction by type of detection:

• Signature based:

– Detects predefined attack signatures

– Low number of false positive detections

– No detection of previously unknown attacks

• Anomaly based:

– Detects anomalous behavior after a training phase

– Can detect previously unknown attacks

– Attacks might go undetected, if they don’t show an anomaly

• Specification based:

– Detects deviation from specified behavior or protocol specification
(RFC etc)

– Recognizes correct behavior accurately

– Requires full specification of system

– Attacks might comply to specification

41

Chapter 10

Web Security

All components of a web application, the browser, the web server and the un-
derlying infrastructure are all subject to various attacks:

The connection is vulnerable to misuse of TCP/IP mechanisms, such as SYN
flooding. Eavesdropping and man-in-the-middle attacks are of concern to any
network connection, and as such also for web applications.

Web servers or web applications are often the target of an attack. Various
techniques such as XSS, injections and authentication bypasses are explained
later in this chapter.

Attacks against the browser exploit flaws in the renderer, engine, through
scripting or plugins like java and flash.

10.1 Transport Layer Security
TLS presents a solution to secure TCP/IP connections. Its goals are to provide
authentication, protection, and confidentiality: Servers are authenticated using
X.509 certificates, clients can optionally authenticate the same way. The trans-
ferred data is encrypted. TLS is implemented on top of TCP/IP and provides
an API very similar to normal TCP sockets.

10.1.1 Handshake Protocol
The TLS handshake protocol establishes a TLS session, including authentica-
tion, negotiation of cryptographic primitives and negotiation of a symmetric ses-
sion key. One TLS session allows for multiple parallel TLS connections.

Figure 10.1 shows an overview of the TLS handshake: In phase 1, the client
offers a list of supported cipher suites to the server. The server selects a cipher

42

client hello

server hello

certificate

server key exchange

certificate request

server done

certificate

client key exchange

certificate verify

change cipher spec

finished

change cipher spec

finished

c:Client s:Server

1

Negotiation of se-
curity parameters
(“ciphersuite”)

Negotiation of se-
curity parameters
(“ciphersuite”)

2

Server authentica-
tion towards client
Server authentica-
tion towards client

Optional: key ex-
change and request
for client certificate

Optional: key ex-
change and request
for client certificate

3

Client key exchangeClient key exchange

Optional: certificate-
based client authen-
tication

Optional: certificate-
based client authen-
tication

4

Switch to encryptionSwitch to encryption

Figure 10.1: TLS Handshake Protocol

43

client random

suggested cipher suites

suggested compression

session ID: 0x00

client hello

server random

use cipher suites

session ID

server hello

c:Client s:Server

Figure 10.2: TLS Handshake Protocol: Hello messages (phase 1)

44

suite, and establishes a session ID. Random values for later key creation are also
exchanged. Figure 10.2 shows phase 1 in detail.

In phase 2, the server sends its certificate, and optionally requests a client
certificate for authentication of the client.

In phase 3, the client sends its certificate, if requested. The client has verified
the server using the certificate, and can now use the severs public key for es-
tablishing a symmetric session key. The client generates a PreMasterSecret,
from which client and server can derive the symmetric key using the random
values exchanged in phase 1. The PreMasterSecret is RSA-encrypted using
the servers public key and then sent to the server.

In phase 4, the symmetric session key is established. The integrity of the
handshake is verified by exchanging hashes over the derived key and the previous
messages. All following communication happens encrypted.

10.1.2 Record Protocol
Once the handshake is complete, the handshake protocol takes over and handles
transfer of data. The record protocol is completely separate to the handshake
protocol, making it theoretically possible to execute the handshake completely
offline. The record protocol handles, in order: Fragmentation, Compression,
Message Authentication Code, Encryption. Receiving works the same way in
the opposite order. MAC and encryption use separate keys for both direc-
tions.

10.2 Injection Attacks
In injection attacks, some specially crafted input to the web application leads
to unwanted effects.

10.2.1 Cross Site Scripting
Many web applications accept some kind of textual input, which then gets shown
to a different user on the website, such as a forum- or social media post. If no
special care is taken, this means that anyone can place arbitrary HTML, in-
cluding scripts, on the website in the targets browser. This is referred to as
Cross Site Scripting or XSS. A typical goal of such an attack is to steal cook-
ies, which might allow the attacker to take over the login session of the target.
Exfiltration of the cookie might happen via the query parameters of an image
that gets loaded from the attackers server via the injected script. Protection
against those kinds of attack include validating the input, and removing pos-
sibly dangerous characters, or making sure that user generated content is only
interpreted as text by the browser, and not executed. Other measures include
instructing the targets browser to not make any request to external servers,
which hinders exfiltration.

45

10.2.2 SQL Injection
User inputs such as login credentials are often used as parts of SQL queries. If
the input contains valid SQL syntax, and is just appended to a query, it might
change the query in a way such that it always returns a certain value to bypass
authentication, or execute arbitrary statements with the privilege of the web
server application. Even escaping the input data might not solve the issue, as
second order injections might circumvent that. Again, it is important to ensure
input data is only handled as text and no situation exists where it is potentially
executed as code.

46

Chapter 11

Data Protection and
Privacy

11.1 Privacy Motivation
privacy motivation

11.2 Privacy by Design and PETs
11.2.1 Anonymous Communication: TOR
TOR implements a form of onion routing and a mix-network: A message for
a server is encrypted with its public key. It is however not directly sent to
this server, but through another server, which requires an additional layer of
encryption for the intermediate server. (In practice, this asymmetric encryption
may be replaced by a key exchange and symmetric encryption for the actual
data, for performance reasons). This is repeated such that there are three
intermediate onion routers between the source and destination. This way, none
of the routers sees both the source and destination: The first router knows about
the source, the last router knows about the destination, the middle router does
not know the source or destination.

Attacks are possible by correlation of packets inside the network, incorrect usage
of DNS or identification by the message payload.

11.2.2 Blind Signatures
A blind signature is needed when a document shall be signed without revealing
it to the signing party. This works by first “blinding” the message, signing the

47

blinded message, then unblinding the signed, blinded message. This results in
a signed form of the original message.

These kind of blind signatures are useful for electronic cash, which should pro-
vide anonymity, verifiable authenticity and protection against double spending.
An analogy works as following: The user who wants to spend money puts an
empty piece of paper with carbon paper in a sealed envelope. The bank signs
that envelope on the outside, which makes the envelope with the paper inside
worth 1$. While signing the envelope, the signature was printed on the paper
inside the envelope. This signed paper is now used as payment. The bank has
however not seen the actual paper inside the envelope. Double spending is pre-
vented by containing a serial number on the paper, which the merchant verifies
with the bank before accepting payment.

11.2.3 Group Signatures
A group of users has a shared public key, but each user has an individual private
key. A message should now be signed with a private key, and verification should
be possible via the group public key. Group anonymity is provided since it
is only confirmed during validation that a member of the group produced the
signature, but not which exact member.

A problem is that the group manager, who issues keys to the members, can
spoof any participants identity and acts as a kind of trusted third party. The
group manager might also be able to identify the individual member from a
signature.

11.2.4 Attribute-Based Credentials
Using Attribute Authentication, the user can provide proof of an attribute
without revealing their own identity. Multiple authentications should not be
linkable. Examples could include public transport tickets, where the owner
should only be required to prove authorization to travel on the current route,
without revealing identity or entire travel plans. ABCs can also implement
pseudonymous or not-at-all-anonymous authentication.

In an ABC scenario, the ABC authority first authorizes an issuer, and issues a
device (smartcard) to the user. The issuer can then issue credentials containing
attributes stored on the card. The card can then generate a selective proof
revealing some attribute to a relying party.

48

	Fundamentals
	Motivation and Introduction
	Terminology
	Attacks and Defenses
	Attacks
	Security Mechanisms and Policies

	Cryptography
	Cryptographic Hash Functions and Random Numbers
	Hash Functions
	Random Number Generators

	Encryption
	Symmetric Encryption
	Asymmetric Encryption
	Diffie-Hellman Key Exchange
	RSA
	Digital Signatures
	Strength of Cryptographic Approaches

	Identification and Authentication
	Identification
	Authentication
	Password Security
	Time Memory Trade-off

	Network Authentication
	Kerberos
	Station to Station
	Perfect Forward Secrecy
	Certificates
	PGP

	Access Control
	Access Control Matrix
	Access Control List
	Capabilities

	Models for Access Control
	Example: Linux
	Multilevel Security, Bell-Lapadula-Model
	Multicategory Security
	POSIX Capabilities

	Malware
	Buffer Overflow Attacks
	Introduction to Malware
	Botnets and Targeted Attacks

	OS Security
	Concepts and Reference Monitors
	Virtualization and Mandatory Access Control
	Virtualization
	Isolation
	Security Enhanced Linux
	AppArmor

	Use-Case: iOS Security

	Embedded and Hardware Security
	Introduction and x86 Privilege Levels
	Isolation and HW-based Attacks
	HW-based Security Mechanisms
	Trusted Platform Module
	Physical Unclonable Functions

	Software Security
	Software Development
	Fuzzing

	Network Security
	Information Gathering
	DNS
	whois
	traceroute
	SMTP
	Sniffing
	Scanning

	Attacks
	Routing Attacks
	DNS Attacks
	Man in the Middle Attacks
	Denial of Service Attacks

	Security Mechanisms
	DNSSEC
	Firewalls
	Intrusion Detection

	Web Security
	Transport Layer Security
	Handshake Protocol
	Record Protocol

	Injection Attacks
	Cross Site Scripting
	SQL Injection

	Data Protection and Privacy
	Privacy Motivation
	Privacy by Design and PETs
	Anonymous Communication: TOR
	Blind Signatures
	Group Signatures
	Attribute-Based Credentials

